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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1324

,,, STEADY VIBRATIONS OF WING OF CIRCULAR PIAN FORM*

i’
r By N. E. Kochin
!,

The nonvertical motion of an ideal incompressible fluid has been
solved (reference 1) for the case of uniform .rectilinear motion of a
wing of circular plan form. The method developed in reference 1 may
also be,generalized,to the case of the nonsteady motion of such wing.
The problem of the steady vibrations of a circular wing is solved
herein. The results will be frequently referred to herein. The prob-
lem of the steady vibrations of a circular wing was solved by another
method by Th. Schade (reference 2).

1. Fundamental equations

The wing, the motion of which is under consideration, is assumed,
as in reference 1, to be thin and slightly curved; its projection on
the xy-plane has the shape of a circle ABCD of radius a with cen-
ter at the origin of coordinates. The principal motion of the wing is
assumed to be a rectilinear translational motion with constant velocity
c parallel to the x-axis. The coordinate axes are assumed as displaced
with the same velocity. On the principal motion of the wing is super-
posed its additional harmonic vibration of frequency u, where the pos-
sibility of deformation of the wing is not excluded. The equation of
the surface of the wing may then be represented in the form:

Z(x,y,t)

where the ratios

where k = 0,1,2,

The fluid is

(1.1)

~k/a as well as the derivatives .a$#x and a~k/ay,

are assumed small magnitudes.

assumed incompressible and the motion is assumed non-
vertical and occurring in the absence of external forces. The velocity

*“Oh ustanovivshikhsya kolebaniyakh kryla krugovoi formy v plane!’
Prikladnaya Matematika i Mekhanika, Vol. VI,,1942, pp. 287-316.
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potential will be denoted by Q(x,y,z,t) and steady vibrations of the
fluid will be assumed.; that is, the velocity potential is represented
in the form:

It is evidentthat the functions QO, Ql, and q2 satisfy the
equations of Laplace

a%k a2~k a2~k ~
—+——= + (k = 0,1,2)
ax2 ay2 az2

The velocity of the particles of the fluid near the eading edge
of the wing DAB is assumed to approach infinity as )5-1 2, where 5
is the distance of the particle from the leading edge, but the velocity
of the fluid particles near the trailing edge of the wing BCD is
assumed as finite. From this edge a surface of discontinuity passes
off on which the function (p undergoes a discontinuity. As in refer-
ence 1, the problem will be linearized. Since the values of the functions

~k and their derivatives are assumed to be small quantities of the first

order, their squares and products are rejected. The functions

Vk(xly>z) ‘e further assumed to have discontinuities on the infinite

half-strip E situated in the xy-plane in the direction of the nega-
tive x-axis from the rear semicircumference. BCD of the circle S to
infinity. The boundary conditions on the surface of the wing are
replaced by the conditions on the circle S located in the xy-plane.
Everywhere outside the half-strip Z and the circle S the functions

qk(xjyjz) are thus regular functions.

The boundary conditions which these functions satisfy are now set
up . On the surface of discontinuity E, the kinematic condition
expressing the continuity of the normal component of the velocity must
first of all be satisfied:

(*)Z=+O=(%9Z=-0

from which is obtained the conditions

(1.2)
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The dynamical conditions expressing the continuity of the pressure
in passing through the swface of discontinuity ~ are now stated.

If a stationary system of coordinates Xlylzl is employed, con-

nected with the coordinates xyz of the moving system of coordinates
by the relations

x= xl - Ctl Y=Yl

then the pressure may be determined

Z=z 1 t.tl

by the following formula:

Since

the following equation will apply in the movable xyz system:

When small quantities of the second order are rejected and the
magnitude F(t) is not dependent on the coordinates, -

af4
P,=- p~t+,c~

x

or, on account of equation (1.2),

For briefness, the following notation

LD/C = k

(1.6)

is introduced:

(1.7]

The condition of continuity of the pressure on E then leads to the
three.equations:.

<.
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(.).=+O.[2)Z=.0
(2-%).=+O=(2-J.=-.
(>+%.)=+o=(%+%).=..

The condition on the circle S is now written.
the stationary system of coordinates has the form:

on E (1.8)

Equation (1.1) in

Zl= <O(xl-ctl,yl) + gl(xl-ctl~yl) cos~tl+ !2(X1-CtIjYI) sin~tl

Hence, for the norml component of the velocity of the fluid parti-
cles adjacent to the surface of the wing,

The notations

yield the boundary condition

which must be satisfied on both the upper and the lower sides of the
circle S and which breaks down into the three conditions:

()a~k

%-
= Z,(x,y) on S (k = 0,1,2)

2=()
(1.9)

The presence of conditions (1.2) and (1.9) permits consideration of
the functions qk(x>y)z) as odd functions of Z:

~k(x,y,-z) = - qk(X,y,Z) {1.10)
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If it is assumed, in particular, that z = O,

.
~k(x,y,o) = O (1.11)

in the entire xy-plane with the exception of the circle S and the
half st~ip E on which ~ undergoes a discontinuity.

The conditions (1.8), because “of equation (1.10), assune the form:

Finally, the absence
wing leads to the evident

The

obtained

The

so that

of a disturbance of the fluid
conditions at infinity:

b~k bvk

‘xl+:” F=xl--”w=o

problem of determining the function” Wo(x,y,z)

conditions for this function was considered in

following equality is set up:

@(x,y,z) = Ql(x,Y,z) + ~z(x,y,z)

(p(x,y,z,t) =
{ 1Qo(x~Y~z) + R @(x,y,z)e-iut

Also,

C.l(x,y) + U2(X,Y} = !.(X)Y)

far ahead of the

(1.13]

($)a
Z1(XJY) + iz2(xjY) = Z(X,Y) = - c x+ ik~ -

satisfying all

reference 1.

,

(1.14)

The shape of the wing will be determined by the equation

The functions @(x,y,z) will then be a harmonic function,
in the entire half-space Z>() and satisfying the conditions:

(1.15)

(1.16)

(1.17]

regular
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(1.18)

E +ik@=O on E (1.19)

following from equations (1.9) and (1.12). In the entire remai~ing
part of the plane xy the following condition must be satisfied:

@(x,y,o) = o (1.20)

Moreover, the following conditions must be satisfied at infinity:

which are the boundary conditions of the first derivatives of the func-
tion @(x,y,z) near the rear semicircumference BCD of the circle S
and the “condition that near the forward semicircumfe ence

7
DAB these

derivatives may become infinite to the order of ~-l 2.

2. Fundamental formulas

In reference 1 an expression was, constructed, which depended on an
arbitrary function fo(x,y),

@%Y)z) satisfying all the

which determined a harmonic function

conditions imposed in the preceding section

(2.1)
X;fl

1U ~(X,y,Z,,)~ COS,d. dx

J# 2f 1~ (E2 + T12+ a2 - 2a& cos y - 2a~ sin y) ‘E ‘V

*-2’fi .

The functions K(x,y,z,~,q) and G(x,y,z,y) for z>O are given by

2
K(x,y,z,~,q) =~arc tan

~~a2-x2-y2-z2+R

~ ar
(2.2}

G(x,y,z,y) =
~a2-x2-y2-z2+R

X2+y2+z2+ a2-2axcos T-2aysin T



NACA TM 1324

which are harmonic functions of x,y,z where

r =A/(x-.!&+( y-q) 2+z2

(2.3}
R = ~(a2 - X2 - y2 - Z2}2 + 4a2z2

In order to satisfy boundary condition (1.9)

(2.4)

it .isnecessary to take

fo(x,y) = - Zo(x,y) + go(y) (2.5)

where go(y) is determined from a Fredholm integral equation of the

second kind.

The solution of the more general problem of steady vibrations may
be presented in a similar form.

Thus, fl(x,y) and f2(x,y) denote two arbitrary real functions,

continuous, together with their partial derivatives of the first and
second order, in the entire circle S;

fl(x,y) + if2(x,Y) = f(x,Y) (2.6)

It will now be shown that the

‘qx,y,z} + J’J
function

{

f(~,q} K(x,y,z,~,q) +

X37C”

SJ
2

1 &-Tlsx G(x,y,z,y) eih
d~ dq

~2fi
An (E2 + q2 + a2 - 2a~ cos y - 2ay sin y)

+
2 (2.7)

satisfies all the conditions of the preceding section except
condition (1.18).
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The function G(x,Y,z,T), as shown by equation (2.2), is harmonic;
hence the function

wiU

AL=

that

rx

L(x,y,z) = e-i= ei= G(x,y,z )dx

d+-

be a harmonic function. In fact,

dx

When this expression
AL = O, since both

It then follows that
Laplace equation

is integrated by parts, it is easily shown
G and aG/ax approach zero for x.+ =.

the function Z(x,y,z) likewise satisfies the

A+=o (2.8)

where from the form of equation (2.7) it is seen that @(x,,y,z) is
regular everywhere outside the circle S and half strip E. In
exactly the same way it is shown that the conditions at infinity (1.21)
and condition (1.20) are satisfied.

Furthermore,

3

J

—n
2

1 (, Y,, )J a2-E2- ~2 COS ~ dy
(~~ ~ q2z+Ta2 - 1d~ dq (2.9)

llq/z ~ 2& Cos ~ - 2aq siny)

“Zfi
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It is clear that if X2 + y2>a2 then
.

E +ik@=O for z=O (2.10)

so”that condition (1.19) is likewise satisfied.

It thus remains to check the finiteness of the derivatives of the
function @(x,y,z) at the points of the semicircumference BCD of the
circle S and to establish the behavior of these derivatives near the
forward semicircumference DAB. But near the forward semicircumference,
the inside integral in formula (2.7) evidently remains bounded; as do “
its partial derivatives; since the first derivatives of the integral

as established in reference 1, and as will a ain be proven, have near
the contour of the circle ?’S the order 5-1 2 (where b is the dis-
tance of a point to the contour ABCD of the circle S), it is clear
that the f“rst derivatives of the function

)
@(x,y,z) also have the

order 5-1 2 near the forward seficirc@erence DAB of the circle S.

For determining the behavior of the function dJ(x,y,z)near the
rear semicircumference I!CD,the right side of equation (2.9) is trans-
formed. Denoting it by M(x,y,z) and making use of formula (2.11] of
reference 1 and the formula of integration by parts (2.14) of
reference 1,

L
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It is evident
semicircumference

there is obtained

@(x,y,z] =

whence it is clear

that
BCD .

this function remains finite near the rear
But When the following equation is integrated,

~+ ik@ = M(x,y,z). (2.12)

re-iti eih M(x,y,z ) dx + +(O,Y,Z) e-ih (2.13)

o

that both the function @ and its derivative with
respect to x remain finite near the rear semicircumference I!CD. The
derivative

7
of M with respect to y and z will be of the

order 5-1 2 near BCD, as follows from a consideration analogous to

that which was adduced previously for determining the behavior of the
function+q (x,y,z) near the forward edge of the wing DAB. Since

Jo

it is clear that the derivative b@/ay, and similarly &@z, remain
finite near the rear edge of the wing BCD.

The function (2.7) thus satisfies all the imposed conditons. The
only condition not utilized was condition (1.18)

()% =Z(x,y) on S
Z=()

(2.14)

When the following formulas are employed:
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,,,

()Ez=o=-f(x~Y) + g(y) e-i-

where J

The following

11

for x2 + y2<a2

for X2 + y2>a2

{

o

.zowa2-x2-’2-z2+R= ad-@=-
it is found without difficulty that on S

(2.15)

~ik.x (X2 ~ Yz _ ~z)-uz (az - &2 - #)u2 Cc,s r f(~,q) dy dx L3Cdq
(x2+y2+a2-

(2.16)
2ax cos y - 2ay sin r)(~z + qz + a2 - 2aE cos T-- 2aq sin y)

equation is thus obtained:

-f(x,y) + g(y) e-i~ = Z(x,y) (2.17)

whence

f(x,y) = - Z(x,y) + g(y) e-iw (2.18)

Substitution of this value of the function f(x,y) in equa-
tion (2.16) yields, for the determination of the function g(y), an
integral equation of Fredho~

.[

a

g(y) = N(Y) + @y,~) g(q) dq (2.19)

-a

where
~:.

“JUJ ~

. .,
&ilw ~2_52.~2~(x,y

N(y) = - ~
,Z,r) Cos r z(~,~) dy dx dg dq (2.20)

X2 + Y2 - 82(<2 + ~z + 82 - 2a5 cos T - 2aq sin r)
s +- ;n
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with G(x,y,z,r) according to equations (2.2) and

H(y,q) =

3. Computation of forces

The pressure p may be determined from formula (1.6), which with
the notation (1.14) may be written in the following form:

P= Pc{g+.e[(g+ik.) <~j} (s,)

For the computation of the forces acting on the wing, it is neces-
sary to know the pressure on the circle S.

Because of equation (1.10), the pressures above and below the wing
differ only in sign:

P-=- P+ (3.2)

For clarity, the signs of the functions on the wing will henceforth
be assumed to be the limiting values in approaching the wing from
above, that is, for z++ o.

For the lift force P the following expression is obtained

P=

JJ
(P- - P+)tidy=-2

U
p+dxdy=

s

(3.3)
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But by form~as
on the umer side of

=-. .

(2.9) and (2.U), the following equation applies
the circle S:

--w +ik$(x, y,O) = #n
JT

~K(x,Y,O, &q) d~dq +

s

1
zi!1 [f(g,q) i kK(x,y, O,g,q) -

s

(3.4)

1~n

J1 ~ 4.- co., W
~ (x2+y2+a2- “1d< dq

2ax cos T - 2ay sinr)(g,2 + q2 + a2 - 2aE cos y - 2a71sinr)

lfl--
2

This expression is integrated over the entire area of the cir-
cle S. The order of integration is interchanged and the two integrals
must be computed first of all by formula (4.13) of reference 1

N ~’
dx dy = 2na (3.5)

s
x2+y2+a2-2axcOS ~-,2aysj,ny

It will be proven further that

Jr K(x,Y,o,E,T) =4@7FT

s

(3.6)

For this proof, the following function is considered:

F(x,y,z”) =
JI

K(X,y,Z,~,q) d~ dq (3.7}

s

Because of the definition of the function K, the function
F(x,y;z) isa harmonic function over the entire space outside the cir-
cle S. By formula (2.35) of reference 1, the following condition is
satisfied on.the surface of this circle:

(3.8)

1-
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and therefore the function (3.7) is the potential of the nonvertical
motion of a fluid corresponding to the translational motion of a cir-
cular disk with velocity +2fi along the negative z-sxis normal to the
plane of the disk. This motion, however, belongs to those that have
been studied in classical hydrodynamics, from which can be taken the
corresponding expression of the function.

I’(x,y,z} =J/’K(X,y,Z,~,q) d~ dq

s

.

{

+a2-x2-y2-Z21-

AF7i7- ar:ctn$+x2+-a2}
(3.9)

Passing to the limit z++ O yields the formula

/’r K(x,Y,O,E,V) dg d, = 4 ~-’ on S

which is equivalent
rical function with

to equation (3.6), since K(x,y,O,~,~) is a symnet-
respect to the points M(x,y) and N(&,q).

The-following formula is thus obtained:

(3.10)
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If.this expression and similar expressions are substituted for the
function QO, obtained from equation (3.10) for k = O, the final

expression of the lift force acting on the wing is obtained:

By integrationby parts and with the aid of the following formula

2n

J

COS y dy 2X5

&2+q2+a2- 2a~cosT-2aq siny=a(a2-~2-q2)
o

(3.12)

equation (3.11) may be rewritten in the form:

4pcP=-—

JJ”

a2- ~2

{

. q2 Re(ikfe-iut) +
n

s

3—n
2

[ U
& f. + Re(fe-imt

COS T dT

}

d~ d~
~2+q2+a2- 2a’~~osT-2aq ~iny-

1
—1-i
2 (3.13)

In a s@ilar manner, the formulas for the moments of the forces
about the x- and y-axes are obtained.

For the moment of the pressure forces about the x-axis

.

Mx =
UU

Y(P- - P+) tidy=’- 2
J!

yp+ dx dy (3.14)

s s
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there is obtained

‘=- 2’CJY’{=+R’[(=’‘k’)‘-i”jp’‘3-’”
The order of integration is interchanged by use of equation (3.4).

It is here necessary to compute two integrals. By formula (4.44) of
reference 1,

U’ 4
=—fia 2 sin T (3.16)

X2+y2+a2-2axcos y.2aysiny 3
s

It will now be shown that

(3.17)
d~d

u

For this derivation, the following ’function is considered:

By formula (2.35) of reference 1, the following equation applies
on the circle S:

and therefore F1(X~Y,Z) is the potential of the motion of

responding to the rotation of a disk about the x-sxis with
velocity -2Yc,a case studied in classical hydrodynamics:

.

(3.18)

a fluid cor-

angular
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rx.... ,,, . . . . F1(X)Y)Z) =LJY11K(X, y, Z,’&~) d~ dq

s

{

+a2-x2-y2-z21-
2a2

W.-C..nJ’~ ‘,3.,9,

Passing to the limit z+ + O yields the formula

equivalent to equation .(3.17).

As a result, the following formula is obtained

Hence, for the moment of the
the following expression is obtained:

pressure forces about the x-axis,

r

1-1-t
2

[ II-&f. + Re(e-fit f)
sinycosrdy

~2+q2+a2
}

d~ dq
- 2a~ cos y - 2aq sin T

1—n
2 (3.21)
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or, on account of the formula

2Tr

J’

sin y cos y dy 21GE7

E2 +’q2 + a2 - 2a~ cos y - 2aq siny = a2(a2 - E2 - q2)
o

(3.22)

the equivalent expression

~=-”~ J’J’d [ [a2-~2-q2 qRe(ikfe-imt)+~ fO+Re(fe-iut) X

s.
1

3
—n
2

J

sin T cos T d~ 1d~ dq
%2 + q2 + a2 - 2a~ cos y - 2a’qsiny

1
—n
2

In the same way for the moment of the pressure forces about
y-axis

% = -JT’(p--‘+)‘x‘y=- 2JP+‘x‘y
s s

there is“obtained

It is here necessary to employ the formulas

U xA& - ‘2 - yz
dx dy = $ fia2cos

x2+y2+a2-2~cosy -2aysiny-
S

(3.23)

the

(3.24)

(3.25)

r

(3.26)
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As before, there is obtained

Integration by parts and use of the formula yields

211

J

COS2 y dy =
~2+q2+a2-2a&cosT- 2aqsiny

o

27(E2
22a(a- E2 - 92) +$

(3.29)

also

3fi

a2
2

[ If
~fi f. + Re(e-fit f)

COS2 y dy

}

d~ d~
E2+q2+a2- 2agcos T-2aq siny

1—n
2“ (3.30)

The value can now be computed for the frontal resistance W, which
is composed of two parts. First, the normal force (p- - P+) dxdy

>. acting on an element of the’wing d dy will ”have a “component in the
direction of the x-axis:
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if

is the equation of the suxface of the wing. Integration of this

expression gives the first part of the frontal resistance in the form:

In fact, the frontal resistance W will be less than WI, since

a suction force w, appears because of the presence of the sharp

leading edge of the wing DAB; therefore,

w= W1 - W2 (3.32)

The suction force w, is connected with the presence of a strong

rarefaction near the edge of the wing. This rarefaction is taken into

account principally by the square terms of the fundamental formulas (1.3)
or (1.5) for the pressure and it is therefore unnecessary to employ
these formulas here.

The suction force W2 is computed from the law of conservation of

momentum applied to a thin filament-like close region z containing

the forward semicircumference DAB of the circle S; region z is
bounded outside by surface u and inside by part S1 of the upper side
of circle S adjacent to the semicircumference DAB and the part S1l
of the lower side
surfaces obtained

The equation
x-axis:

-w~-
JJ

p cos(n,x)

u

of the circle S. Figuxe 1 shows a section of these
by a passing plsme through the z-sxis.

expressing the momentum law is projected on the

(3.33)

—
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The left-hand side is the sum of the projections on the x-axis of
all the forces acting on the volume of fluid considered, and on the
right-hand Side is the total derivative with respect to time of the
component on the-’x-~”is of the momentum of this volume; this derivative
consists of two parts, a volume integral connected with the local change
of velocity and a surface integral expressing the transfer of the momen-
tum of the particles of the fluid through the bounding surfaces of the
volume ~.

Equation (3.33) may be written both for the stationary system of
coordinates OIXIYIZ1 and for the moving system of coordinates o~z .

For the stationary system of coordinates, expression (1.3) is used
for the quantity ‘p; moreover,

a(p
‘X=xi “n=% {3.34)

By the theorem of Gauss

ffJ”2”=JlJ&d’
T T

JYaq
~ ~ Cos(n,x) ds +

fJ

av=
Q%

cos(n,x) dS (3.35)

a S’+sl’

From equation (1.3) and the equation just derived, the following
expression is obtained from equation (3.33) after a number of simple
trsmsformations:

“2=:J#’’f(92+@’y+(%!]Cos(nx) ‘s- PJ’gp,

cos(n,x) dS (3.36)

..>
Since @p/btl and &.p/bx near the leading edge of the wing are of

the order 5-1/2 and &P/an and cos(n,x) are finite on the surface of
the wing, the last integrals drop out when region % is extended to the
line DAB. The following limiting equation is therefore applicable:

L.. . .. .- -.. ..—
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For computation ~f the suction force W2, the expressions must be

found for the components of the velocity near the leading edge of the
wing DAB. The velocity of the fluid particles ear the leading edge
of the wing are shown to be of the order of ?b-l 2 if 5 is the dis-
tance of the particle to the contour C of the circle S. From equa-
tions (1.15) and (2.7) it is evident that

x(x,Y,z,t} (3.38)

where the function x(x,y,z,t) and its derivatives remain finite near
the leading edge.

The behavior of the function is now examined more closely

U(x,y,z) =

U

f(~,’q)K(x,y,z,~,q) d~dq

s

(3.39)

near the contour C of the circle S. Therefore,

Since on C the function K becomes zero, the following equation
resuits

showing the finiteness of this integral. Therefore
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where O(1) denotes a magnitude which remains finite when b
approaches O. But

aK aK 2@ a a2 - X2 - 2 - ~2+R

Tx+TE=- f12a2r2+(a2& -
{

x
q2)(a2-x2-y2-z2+R)

{

X ~a~-~
R

}
‘&”’

hence

~ .- @+/ a2-x2-y2.z2+R JJ f(~, q)
n

x
2a2r2+(a2-&2-~2) (a2-x2-y2-z2+R)

s

[

dz-37 .
R 1+’ d~ dq + O(1)

The coordinates 6, 0, and a are introduced

(3.40)

x = (a + 5 cos a) cos 6 y= (a+bcosa) sine z = b sin u

(3.41)

Then

az - X2 -Y2-Z2= - 2ab cos u - 52

a2+4at5,cos a,+62=2a6 +...
(3.42)

~a2-x2- y2-z2+R=2sin~ @+. ‘.:

R2-a + X2 + yz + z2=2COS;++. . .
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The point with coordinates (x,Y,z) is brought into correspondence
with the point of the circumference C with the coordinates

Xo = a cos 6 y. = “a sin @ Zo=o

and

r.2=(xo-E)2+ (y0-q)2=E.2+72+a2 -2aEcose-2ao sine

. (3.43)

Near the contour C, the principal part of the integral

JY 2a2 ‘fa2- ~2- ~2f(Ej~) d~ dq
Jl(x,y,”z) =

2a2r2 + (a2 - ~2 - ~2)(a2 - x2 - y2._ z2 + R)
s

(3.44)

is

PP

J“ f(~,?l)~a2 - &_2- 72 dg dq—— (3.45)
g2+q2+aZ -2a~cose-2aq sine

For this purpose, the following difference is estimated:

A = Jl(x,y,z) - N(e)

The circle S is divided into two parts: the circle s~

of radius a
radii a - e

- 6; and the ring S2 lying between the circumferences
an’d a.

of

{

@==7 ,a,r, , (a, -,, - ,;:2 ,
}

-+ dcdq
-x -Y2-Z2+R) TO

w=7-2a2r: *:: ;a:2-‘2-‘2)(a2-‘2-‘2-‘2‘;) ‘~ d~
=0 -&2- n2)(a2-x2-y2-z2+R)



NACA TM 1324

—..

25

22
+V+a - 2a~cos e -“2aq sinf3 - (X-g)z- (y-~)z - #

= 25cosa(~cos 6+qsin6- a)-b2

2a2(ro2 - r2) - (a2 - ~2 - q2)(a2 - X2 - y2 - Z2 + R)

=- 2a6r@2 cosa-(a2+ ~2+q2)b2-(a2 -<2- q2)R

Since

therefore

12a2(r02 - r2) - (a2 - ~2 - q2)(a2 - X2 - y2 - .2 + R]l< 2a&02 + 2a252 +

Hence if lf(g,q)l< M in the circle S then

JY2a252M ~ d= d, +
ro2[2a2r2 + (a2 - ~2 - q2)(a2 - x2 - Y2 - Z2 + R)]

S1

J7 q2)3 d~ dq
RM

ro2 [2a2r2 + (a2 - <2 - q2)(a2 - x2 - y2 - z2
S1

+R~ “

But by equation (2.24) of reference 1

f.u.u~a2 -~2 - q2 d% dq 62
2a2r2+ (a2- ~2 - q2)(a2 - X2 - y2 - Z2+R) a

s

Since-.

2a2r.2+ (a2 - &2 - q2)(a2 - X2 - y2 - Z2 + R)

= 2a2r02 + 2a5r02 cos a + (a2 + g2 + q2) 52 + (a2 - E2 - q2) R

II
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hence for 6<a/2

2a2r2 + (a2 - “~2 - q2)(a2 - X2 - y2 - z2 + R)> a2r02 (3.46)

and

The last integral evidently does no{ depend on (3;hence it may be
assumed that G = O and therefore

J’N1 ‘na-r-P @d$N
a- e

— a2-&2-712dEdq=
J4

2n(a2+ fJ2)pdp
(P2 - 2ap cos & +.a2)2 =

‘.4
S1 00 0

(a’- P2)5

‘[
p=a-&

4na2 2Z 4na2d—l3f/- - a’ - p’
P=o “~-&

+2’3

Similarly

JY (a’- ~’ - q2)3d~dq

‘o [2 2a2r2 + (a’- .<2 - q’)(a’- # - #
S1 - z’ +R)-J‘$J&A@=-dE d,

and

2Z a-e

CM ~ lrJ

~pdpdd a-’2fi(a’+P2) p~p$ (’2-~2-q2)3d~dq.
S1 00

(a’-
J2ap COS$ + p’)’ =
o ~

As a result, the following inequality is obtained
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The difference is estimated

On account of equation (3.46)

But

.

and therefore

Thus for

the estimate is obtained

lA21<6~@

A. Al+A2

Assuming

&’=&

yields

Thus ,., ---,,,,..,. .,

J7 2a2~a- f(~,q) d~;~’
2a2r2 + (a2 . .52- q2)(a2 - X2 - y2 - ~2 + R)

= N(e) + 0($%)

s
(3.47)

l– .— —
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where O(a) denotes a magnitude, whose ratio to G remains finite
when 5 approaches zero.

An estimate
given:.

J2(x,y,z) =
.

‘of the second integral entering equation (3.40) is

nn

(3.48)

Again assuming 5<a/2 yields

but

a-&

J o

a

Ja-E

a
p dp

J

< P dp

7$
a2 + p2 + 52)2 - 4a2p2 2a5 ~!

a-&
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hence

. IJ21 <
*(+=%)

and for c=b

(3.49)

From equation (3.40) and equation (3.42 , the following is obtained

1on account of the estimates (3.47) and (3.49 :

fiN(e) x’da2 - X2 - y2 - Z2 + R , ~tl~g=-
ItaR

In exactly the same way, there is obtained

au 2-x2 -y2-z2+R
s=- I’rfi

+ 0(1)

(3.50)

(3.51)

Finally,

But

g ., -=arc tan A+ 2A

[

z+ z(a2 + X2 + y2 + Z2 - R
fir3 fi(l+ A2) - -

Y
rR(a2 - X2:- y2 - Z2 + R)

where

A= ~a2-62- q2Va2-x2-y2-z2+R

ar -1/Z
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and therefore

au. 2@az(a2 +x2+ Y2 + Z2 - R
7Z - ‘J.T

f(~, a2 - ~2 - q2 dg dq
2-x2 -y2-z2+R “2a2r2 + (az -

+ o(1)
~~~ q2)(a2- X2 - y2

s -Z2+R)

Again use is made of equations (3.47) and (3.42) and the fact that
for z>O

z

~a2-x2- y2-z2+R=*tiR-a2
+X2 + yz + z2

without difficulty:

~U a2.+x2 +y2+ Z2 - RN(6) R 2+X2+Y2~. -a + Z2 + 0(1)
nRa2fl

(3.52)

From what has been said previously about equation (3.38) it is
evident that if

‘(g~~~tl = fo(~,q) + fl(~,~) Cos Ot + f2(~,q) sin cot (3.53)

N(e,t) =JYF(E,q 2-~2-q2d~dq

~2+q2+a2- 2a~cos9-2aq sine
(3.54)

s

‘the following results
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a$ 2.y2_z2+R
N(6,t) + 0(1]

%.%3

az -X2 -Y2”-Z2+R
$=-d

N(e,t) + 0(1)

\

(3.55)

< 2 AR

aQ= 1
(a2+x2+y2+z2-R)x

& 2~ n2a2R

+ X2 + Y2+ Z2 N(6,t) + 0(1) 1

or, in the coordinates 5,.e, a

(3.56)

()N(e,t) COS: u
g= + o(1) J

The computation of the suction force W2 by equation (3.37) is.
considered. An arc DIABof the circumference C is taken symmetrical.
with respect to the x-axis with subtending angle 2eo<l’c. For the sur-

face a, the part cro is tdcen.of the surface determined by equa-

tions (3.41) for constant 5.,”where e changes from -90 to + 130 and

a from -n to +X and two bases, one of whichj al, corresponds to

e=eo and the other, CY2,corresponds to O = -9., where on these

bases 5 varies from O to 50 and u from -n to +n.

On the toroidal surface:

,. cos(n,x) = cos a cOs.e cos(n,y) = cos.a sin 0. cos(n,z) = sin u

+ o(1)
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Hence simple computation shows that

e.
1O(WO) =- 1 N’(e,t)CO. e de +0(*)

00

have

In the same manner, the integrals taken over the bases al and U2

the order 0(50). Hence if 50 approaches zero, for the suction

force developed along thearc DtABt, the following” expression is
obtained

Now when 90 approaches n/2, the required expression for the

suction force W2 is obtained in the following form:

G

w2.--Q-

J“

N2(G,t) COS G de
2X3

lx-—
2

(3.57)

The mean value of the frontal resistance is found. Equation” (3.31)
shows that for the mean value of WI
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In the she way, for the mean value of the suction force

L

TJ2=-3
f[ 1

No2(e} +;v12(d +;N22(@ COS e de (3.59)

1.-
2n

where /

+ az - 2a~ cos

of the frontalFor the mean value

(3.60)

resistance

R2 (3.61)

4. Example

If a plane wing varies its amgle of attack periodically according
to the harmonic law so that the equation of its surface is

(4.1)z = (PO + 131Cos LDt) x

in the notation of section 1, the following is obtained

L)(%Y) = My L1(X,Y) = Plx E2(X,Y) ‘o

and therefore

Zo(x,y) = - Cpo Zl(x)y) = - cp~ Z2(x,y) = - ck~lx

(4.2)
Z(x,y) =Zl+iZ2=- Cpl(l + i x)

The function f(x,y) corresponding to this value of the function
Z(x,y) is determined by equation (2.18) where g(y) is the solution
of integral equation (2.19).

,. ,- Consideration
by assuming that

is restricted

fo(x,y) = A.

to the solution of the inverse problem

f(x,y) = A + Bx
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where A and B are constant complex ”numbers and A. is a constant

real number and the shape of the wing is determined corresponding to
this function. By such a method it is possible to obtain also an
approximate solution of the direct problem of the nonsteady motion of
a wing according to the law (4.1) forthe case of small frequencies of
vibration.

The forces acting on the wing are determined. For determination of
the lift force P, use is made of equation (3.13). The following rela-
tions are used

as are equations (3.5) and (3.26), yielding without

4pc

{( )
P.-Y Re$idca3Ae-fit +

(4.3)

diffic~ty

3
—11
2

[
a2 A. + Re(Ae

IJ

-iut

1
—1-t
2

3

2 3 Re(BecosydT+xa

-i”tf;c0s2”d$

2

or

(4.4)

The moment of the pressure forces about the x-axis equals zero on
account of symmetry:

MX=O (4.5)

If the moment of the pressure forces about the y-axis i.s determined
by equation (3.28) and, in addition to the previously mentioned formulas,

use is made also of the formula
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2

a3 AO + Re(Ae-iut)

lfi-—
2

35

1

2 4 Re(Becos2Tdy-~a

-i”tj:fic0s3’dil

2fi

or

4pca3 4pca3 Re(Ae-~t) -
h$=-TAo. T

27. [ (-= ’+1

64pCa4 Re ~-tit 1

(4.6)

The frontal resistance is computed. First the suction force is
computed:

If

A= A3_+iA2 B.Bl+iB2

according to equation (3.53]

F(kjq,t) = AO + (Al + BIE) cos ut + (A2 + B2E) sin ~t

If equation (3.54) is applied and use is made of equations (3.5)

and (3.26],

N(@,t) = 2fia(Ao+A1 cosut+A2 sin ut) + $na2 cos 0 (Bl cos ut+B2 sin ut)

Equation (3.57) yields tithout difficulty the expression for the
suction force:

Pw2=—

{

8fi2a2(Ao + Al coscut + A2 sin mt)~ +
2fi3

! #1 .a3(Ao+ Al
3

co’

,,.

mt + A2 sin ut)(Bl cos cut+ B2 sin ut) +

}.””

a4(Bl ‘COS mt +’B2 “sin’’mt)2
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)}a2BlB2 sin tit (4.7)

The total frontal resistance is obtained by the equation

W=W1-W2

where W1 is determined by equation (3.31)

For the mean value of the frontal
obtained:

resistance the following is

iz (4.9]

where

(4.10)

For determination of the functions ~o(x~Y) and ~(x,y) character-

izing the shape of the wing, equation (1.16) is used.

a~o f)a-c= =ZO(X,Y) -c x + ik~ = Z(x,y) (4.12)
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where by equation (2.17) in this case

., z~(x,y)= - Ao+ @(y] Z(x,y] = - A - Bx+ g(y~e-ih (4.13]

and the functions go(y) ~d g(y) in this case according to equa-

tion (2.16) have the form:

go(y).E!g x

1 1
(X2+ ~2 - *2)-Z (a2- ~2 - 112)Z,~.~ dy ~ d~ dq

(x2+ y2+a2- 2axcosr - 2aysiny)(~2+q2+a2- 2* cosy- 2a~sinr)

i3(Y)= ~ x

m~fl

JJJ [
.1

Jqxz + Y2 - ~q =(a2-E2 -n)2;(A+B&) cosrdpixd~dn
(x2+ y2+a2 - 2axcosr - 2aysiny)(g2+~2+a2 - 2a”Ecosr- 2a~fiinr)

s 1+Ca-112

Equations (3.5) and (3.26) yield

m3fl
2

a2Ao
QJY) =---J

u +- 1—n2

COS r dy dx
x2+y2-a2(x2+y2 +a2-2axcosT-2ay sinr)

\

z

Lrg(y) =$
1
-1-c2

,.
Integration

gikX(A+ 2/3~ CO.r) Cos rdrdx
x2+y2-a2(x2+y2+ a2*2axcos r-2aysiny)

J

.of equations (4.12) yields
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()
(4.15)

-ikx
{(xjy) = A + ~ 1 ‘i;c

iBx 1
- — - ; g(y) xe-i~ + h(y) e-iw

kc

where ho(y) and h(y) are arbitrary functions of y.

The function ~(y) was obtained in reference 1, where, however,

errors slipped into the computations. Setting

y. - a cos 6 ~(e) =~sinego(- aces 19) (()<e< J()

(4.16)

gives in place of equation (4.22) of reference 1

Hence setting ~(y) = O and ~ = ac in place of equation (4.23)

of reference 1 yields

{

CO(X,Y) =CLx :-

~.

2’2w

In particular

q/z-q/z-
‘w+@=

fory=O and y = ~ a/2 the

G-A/a-y )~+q~
(4.18]

following values are
obtained in place of those given in reference 1:
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..,[ 1-h(@-+ 1) “{(X,O) = ax :- j lnq@-+1) + ~ 0.9263 ax

(){x,~;=

[

3 11ln2(2 ~) --$ ln23+~ ln(2+@)+~ In 3 = 0.9146 axax —-—
4 2fi2

In the same way, the eqxansion given in reference 1 of the function
HO(6) in a trigonometric series in the interval O~O~fl should be

replaced by the following:

HO(9)
‘sine s-l ‘Z**P (11 1 )—+=+...-l——

3 4k-t-l

(4.19)

that is,

the

~1 = 0.9348 135= 0.1312 pg = 0.0504

~3 = 0.2667 137=0.0796 . . . . . .

In connection with this, corrections should also be applied to
numerical values,which are given in reference 1. of the coef-

ficients ~ of the-trigonomet~ic series for the c~rculation obtained

by the usual theory .

Bl = 2.2125 aca B5 = -0.0296 uca B9 = -0.0067 uca

B3 = -0.0934 aca B7 = -0.0133uca . . . . . . . .

Hence for the lift force in place of equation (4.29) of refer-
ence 1, the following is obtained: ‘

P.
1’

= ~ fipca Bl = 3.4755 pc2a2a
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which exceeds the accurate value by 36 percent.
in place of equation (4.30) of reference 1, the

For the induced drag,
“following is obtained

Wo= 1.9350 pc2a2a2

which exceeds the accurate value by 87 percent.

Corrections are made i“nthe third example given in reference 1.
The value of the definite integral is:

1

Jo J=’Y=$-;‘nz(@+‘)
Hence in equation (4.52) of reference 1 the coefficient of “ ,

sin e COS.O is simplified and assumes the value 7-3X2 8. In equa-
tion (4.53) the coefficient of sin Ze was incorrectly computed;
its correct value is

3fi2 32
52 = - ~ + ~= -0.14555

In this connection, the value of the coefficient B2 should also
be corrected:

B2 . -0.7436 ucaz

For the induced drag and the moment of the forces about the x-axis,
in place of the values of equation (4.55) of reference 1, the following
is obtained:

W = 0.4343 pu2c2a4 ~= 0.5840 ~2c2a4

the first gives an error of 140 percent; the second of 55 percent.

The shape of the wing obtained

Z(x,y,t) =y x - + g+)(y)x +

Re{Utit[( ) e-ikx
A+; ‘i~

iBx 1

)

- — - ~ g(y) Xe-ikx
kc

(4.20)

depends on t-hefrequency of the vibrations and is deformed during the
vibrations. The rigid wing is of greater interest.

It”is possible with the aid of the results obtained to obtain an
approximate solution of the problem of the vibrations of a plane cir-
cular wing for small frequencies of vibration.
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The case is now considered of a wing varying its angle of attack
periodically according to the harmonic law (4.1), so that equation (4.2)
..holds. .

.
If

f~(x,y) =Ao f(x,y) “= A + BX

eqyation (4.2) yields

‘O(XJY) = - A() +

If

.

dY) Z(x,y) = - A - Bx + g(y) e-i~ (4.21)

COS r dT d’

~ ‘X2+ ‘2+a2 - 2= Cos ‘- 2ay ‘in ‘~

eikx cos T dy dx

a2 (x2+y2+a2- 2ax cos T- 2ay sin r)

Then

Q)(Y} = A@()(Y) “g(Y)= (4.23}AGl(Y) + BG2(Y)

In place of Gk(y)J”their mean values are taken over the area of
the wing:

(k= 0,1,2) (4.24)

I —
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frequency of the vibrations is assumed small, or more
the magnitude ka is assumed small, the expansion

G

may be limited to the first two terms.

From equation (4.21), the following
obtained

approximate expressions were

(4.25)
Z(x,y)=-A-Bx+ (l- ikx)(A~ + B~2)

Comparison with equation (4.2) results in:

whence

C131(1+ 2ik~2) c~lik(l - 2z~)
A= “+ A B= (4.26)

1- ~ + ikG2” l-~+ik~2

The following is computed

f

a
2Go&v

f

Gob) -2 @=: “GO(- a Cos e~sin2 e ‘e
fia

-a o

But by equation (4.16)

go~- a cos e)
sin e Go(- a cos e) = sin O

Ao
.> ~(e)

hence, expansion (4.19) is used, yielding
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and therefore

;O=$ -0.4053 = 0.0947 AO = 1.lo5cpo (4.27)

Equations (4.26) show that in computing ~1 it is sufficient to

use the jjermsof first-order smallness relative to ka, while in com-
puting G2 it i.s sufficient to use the principal term not depending

on k. For small ka the following results

:2” G20+ O(kaq (4.28)

where % snd G20 are the mean values over the area of the circle S

of the functions

w;~

%(Y) =$

JJ

xcosrdrdx

m
~fl ~~(x2.@+.,- 2ax.o.r-2.ysi. ~]

2

(4.29)

v

JI
G

G20(y)=:$

i-- 1—n2

‘Infact,

COS2 y dr dx

~~(x2 + y2 + *2 - 2ax .0s T - 2ay sin T)
(4.30)

.

where

G*(x,Y,r) =
eikX - 1 - ikx ) co. rd--

~(’2 + ,2 + a2 - 2= Cos ~ - 2ay sinr~

.— .—...——.——---
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The interval of integration with respect to x is divided into two

parts:
‘ro”-

.to 2a” and from 2a to CO. Since for a>O

in the interval 4 a2 - yz$x~za, Ieikx - 1 -
Iikx ~ (2ka)2 and

therefore

[~~f--~: I ,4,2)

G*(x~Y~T) dy dx dy <(2ka)2 ;o<0.38k2a2

On the other hand, for x>2a, II
y <a, Jc/2gyG3fi/2 the inequal-

ity holds

Xz+yz ~x
-az>s 2

(x- acosy)2+ (y- a siny)2~x2

As
3
—II
2

J

COS y dy = -2

1—m
2

/Ll-?2 -$dy. $eih-l - ikx = cos kx - 1 + i(sin kx - kx)

the following inequalities are obtained when, for clarity, ka is
assumed<l,

< 0.25a2k2+ 0.12a2k2In& (4.33)
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Combining inequalities (4.32) and (4.33) yields, on account of

equation (4.31,),

&.;o- +- o.12a2k2 h~ik~ll< 0.63a2k2
ak.

from which the first of the estiniates (4.30) follows.
.

In an entirely analogous manner, since, for a>O

from the inequality

a

E2-620==-
32

J -a

‘w=:”

Lb
~ikx .

1
X2 + 3r2- a2 (x2 + y2 + a2 - 2ax cos r - 2ay sinr)

. —n
2

.

the inequality is obtained

which proves the correctness

The integral (4.30) was
Hi(@) of-reference 1 is obtained if

of the second estimate (4.28).

considered in reference 1. The function

3fi2
— sin @ G20
2a

{

-a cos e) = Hi(6)

“ For this function the expression was obtained (equation (4.36)
of reference 1 with the correction of the error appearing therein)
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The expansion of this function in the interval O<e~fi in a trigo-
nometric series has the form

w

Hi(e) =
z

T2k+l sin(2k + 1) 19

k=O

where

1
—n
2

~l=n-:-

J’

in tan; dx = -0.69314

0

Hence

X n

Z20.: J’G20(-acos.9)sin2e de ‘s
J

(4.35)sine Hi(o)de = >Tl = -0.0468a3X3
o 0

.
The mean value %1 is computed. Integrating (4.29) with respect

to T yields

J’
w

G1l(Y)=;
{

.~#2+ b-42+‘d=+-=‘2(X2:Y2)2(X2+Y2) ‘2+(y+a)2+-
x(a2+ x2 + y2) arctan

}

X2 + y2 - a2 ~

(X2+ y2)(x2+y2 - a2) 2ax

If

(4.36)

!’F
x= at y=-acosQ ~ sin @ Gll(-a cos 19)= H(9)

then
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H(13)=

sin e

J {
2 4&@

H(8).= sin9 tcOse ~t+4cos2 +

7’”2
-’2(t2+ COS2e) - 2(t2+ COS2e) t2+4~in4$@

.
tz(tz+ 1 + Cos’e) ~2

-.ctan

}

- ::2 e at
(t’+ cos’e)(t2- sin2e)

Computation of

n{(sin131-sin~
4 sin4

this integral results in

)“e-cosz +~sine ( x )1+cos+9 l+sin+e

‘hcos+e)ksin+?+
1 1)

l+sin$tl
2e in tm~ - In

l+cOfi~e

r

47

(4.37)

Further,

n

The computation of the last integral leads to the result

Thus for small ka

51 = 0*0947 + 0.1556ika

Substituting these values in (4.26)

G2 = -0.0468a

gives

1- 0.0936ika ik(O.8106 - 0.311ikaA = c~l 0.9053 -
0.202ika

B = C~~
..,, 0.9053 - 0.202ika

(4.39)

(4.40)
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Thus for small frequencies of vibration, to a first approximation:

AO = 1.105cPo A= (1.105 +0.144ika) cpl

,,
B = 0.895ikcPl (4.41)

For the periodic vibrations with small frequency, in accordance
with the law (4.1) of a plane circular wing,” the previously derived for-
mulas may be used for the forces where the values Ao, A, and B have

the values just given. For the lift force, the approximate expression
is obtained from equation (4.4]

P=
{

pc2a2 2.813~o + ~1(2.813 cos~t

}

-1.766ka sin at) (4.42)

The fluctuation in the lift force due to the vibrations of the
wing thus leads the latter in phase, the maximum value of the lift
force being greater than the value which was obtained in the computa-
tion for the steady motion.

In the same way, equation (4.6) leads to the following expression
for the moment of the pressure forces about the y-axis:

%= { )
- pc2a3 1.473p. + j31(l.473 cos ut + 0.867 ka sin”mt) (4.43)

L

The component of the frontal

given case by the evident formula

W1 = P(po

that is,

{
Wl = pc2a2 2.813p02 + 1.406~12 +

J

resistance W1 is determined in the

+ p~ Cos (Dt)

130P1(5.626 COS at -1.766ka sinut) +

-0.883~1
)2 ka sin 2mt (4.44)
J

The suction force is obtained from equation (4.7), restricted to
the first powers of ka,

{
2 2 1.554~02 + 0.777~12 + ~@l(3.107 cos cut+ 1.888ka sinut) +W2=pca

}

o.777~12,cos 2@ + 0.944ka P12 sin tit (4.45)

The following expression is obtained for the total frontal
resistance:
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w=wl-

{
W2 = pc2a2 1.259P02 + 0.630p12 + 130P1(2.519 cos cot -

}
3.653ka sinut) + 0.630p12 cos at -1.8271312 b sin ~~ (4.46)

For the mean value of the frontal resistmce

R=
{ }

pc2a2 1.259~02 + 0.630B12 (4.47).

The flapping wing is considered such that

z = Box + pl Cos Ust (4..:.:)

In this case

Zo(x,y) = - Cpo Z(x,y) = - ikc~l (4.49]

Comparison of these expressions with equation (4.25) shows that
in the case considered it ii necessary to take

that is,

A. = 1.105c~o A

or, by restriction

A. = -1.lo5cj30

(4.50)

k2c131(0.0947+ 0.156ika)l-ika 0.0.468
= ‘kc~l 0.9053- 0.202ika B=

0.9053 -0.202ika

(4.51)

to small te”rmsof the second order with respect to k,

A = ikcPl(l.105 + 0.195ika) B = 0.105k2c~l

For the lift force

{
P = pc2a2 2.813130

L

and for the moment

~.- pc2a3

of the

(4.52)

}

+ 2.8131@l sin ust+ 0.3C)lIk2aj31COS ut (4.53)

pressure forces about the y-axis

{

1.473~o + 1.473k~l sin mt

}

-0.181k2a~l cos ut (4.54)
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The component of the frontal resistance
f

WI (2 2 2.813~02 + 2.813kp@l sin=P~O=pca
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}
Ust+ o.3olk2ap@l Cos Ut

(4;55)

The suction force will be, with an accuracy up to terms of the
,second order with respect to ka:

W2=pac
{

2 2 1.554~02 + 0.777k2~12 -0.376~o~lk2a cos mt +

3.107kpo~l sinut
}

-0.777k2~12 COS at (4.56)

For the total frontal resistance

w=
{

pa2c2 1.259p02a -0.’777k2~12 -0.294kpo~l sin ut +

)0.677k2aPoBl cos mt + 0.777k2P12 cos 2u)t (4.57)

Its mean value

so that a decrease

J
will be

{ }

fi = ~2C2 1.259~02 -0.777k2~12 (4.58)

is obtained in the frontal resistance as compared
with the wing

1. Kochin, N.

which does not

E .: Theory of
Mate&.tika i Mekhanika,

2. Schade, Th.: Theorie der

execute a flapping
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.,. . ,_. ~~THEORY OF WING OF CIRCULAR PLAN FORM*

By N. E. Kochin

A theory is developed for a wing of circular plan form. The dis-
tribution of the bound vortices along the surface of the wing is con-
sidered in this theory, which has already been applied in a number of
papers. In particular, the case of the circular wing has been examined
by Kinner in reference 1.

A second method is considered herein which permits obtaining an
expression in closed form for the general solution of this problem.
The wing is assumed infinitely thin and slightly cambered and the problem
is linearized in the usual manner.

Comparison of the results of the proposed theory with the results of
the usual theory of a wing of finite span shows large divergences,
which indicate the inadequacy of the uSual theory of the case under
consideration. For the wings generally employed in practice, which
have a considerably greater aspect ratio, a more favorable “relation
should be obtained between the results of the usual and the more accurate
theory.

1. Statement of the Problem

The forward rectilinear motion of a circular wing with constant
velocity c is considered. A right-hand system of rectangular
coordinates Oxyz is used and the x-axis is taken in the direction
of motion of the wing. The wing is assumed thin with a slight.camber
and has as its projection on the xy-plane a circle ABCD of.radius a
with center at the origin of the coordinates (fig.
of the wing in the xz-plane is also shown).

Let

z = ~(x,y)

represent the equation of the surface of the wing,
as well as the derivatives ~~@x and 3@ are
magnitudes.

,,

2, in,which a section

(1.1)

where the ratio ~/a
assumed to be small

*llTeoriya kryla konechnogo razmakha krugovoi formy v plane.”
Frikladnaya Matematika i Mekhanika, Vol. IV. No. 1, 1940, pp. 3-32.
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.
The coordinate axes are assumed to be immovably attached to the wing.

The fluid is considered incompressibleand the motion nonvertical, steady,
and with rioacting external forces. we velocity potential of the
absolute motion of the fluid will be denoted by Q(x,y,z) so that the
projection of the absolute velocity of a particle of the fluid is deter-
mined by the formulas

(1.2)

The equation of continuity

shows that the function

At the leading edge

avx +>+avz

S- ay Z“”

Q must satisfy the Laplace equation

&+a%+a%

ax2 ay2 S’”
(1.3)

of the wing the velocity of the fluid particles
is assumed to become infinite to the order of l/@ where 8 ‘is the
distance of the particle to the leading edge; at the trailing edge the
velocity is assumed finite. From the trailing edge of the wing a
surface of discontinuity is passed off on which the function q suffers
a discontinuity. The function q(x,y,z) and all its derivatives over
the entire space bounded by the said surface of discontinuity and the
surface of the wing are continuous.

The problem is linearized in the following manner. The function Q

is assumed to suffer a discontinuity on an infinite half-strip z located

in the xy-plane in the direction of the negative x-sxis from the rear
semicircumference BCD “of the circle S to infinity. In the same
manner, the condition on the surface of the wing is replaced by the
conditibn on the surface of the circle S located in the xy-plane
and in this way the function q(x,y,z) is assumed to be regular in the

region obtained by cutting the infinite half-strip Z and the circle S ‘
from the entire infinite space.

The boundary condition must be satisfied

h
x=

c cos(n,x)

on the surface of the wing.

(1.4)
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where n ois the direction of the mrmal to the surface of the wing.

The direction of this normal, because of the assumption of small curva-. ,.. .
ture of the”wing, differs little from the direction of the z-axis. If
small terms of the second order are rejected according to the fomula

aJ

cos(n,x) = -

m

(1.5)

in place of equation (1.4), ●

& a(—=
az -Cz

‘This condition must be satisfied on the surface of the wing, but
it is assumed satisfied on the surface of the circle S, that is, for
z = Oj this again reduces to the rejection of small terms of the second
order by comparison with those of the first order.

The boundary condition is obtained:

(1.6)

which must’be satisfied on both the ‘upper and lower sides of the
circle S.

The boundary conditions are set up which must be satisfied on the

surface of discontinuity Z . On the surface of discontinuity at the

trailing edge of the wing, the kinematic condition expresses the con-
tinuity of the normal component of the velocity, that is, the magnitude

~~n must remain continuous in passing through the surface of dis-
continuity. Since on the surface of discontinuity the direction of the
normal differs little from the direction of the z-axis, transfer of
the condition on the surface of discontinuity to the half-strip 2,
gives the equation

(S)z=+omz=-ofor14<a; x2+y2>a2;x<0 (1.7)
,.

which expresses the continuity of ~/az in passing through the surface

of discontinuity Z .

I —-—— —.
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The dynamical condition expressing the continuity of the pressure

in ~ssing through the surface of discontinuity ~ is considered.

In order to determine the pressure p, the formula of Bernoulli is

applied to the steady flow about a wing obtained by superposing on
flow considered, a uniform flow with velocity c in’the direction
the negative x-axis. In this steady flow the velocity projections

determined by the equations

M a~.~z=a
● ‘x =“%; ‘y=G’ Z3z

and therefore the formula of Bernoulli reduces to the form

Rejection of small terms of the second order results in

bp=po+pc—
ax

the
of
are

(1.8)

(1.9)

where P. is the value of the pressure at infinity.

Since the pressure must remain continuous in passing through the
surface of discontinuity at the trailing edge of the wing, the equation
obtained shows that a/& does not suffer a discontinuity on the

surface of discontinuity. Transfer of this condition to the surface Z
yields the condition

(~)z=+o=(~)z=-o‘orIyl < a; X2+Y2> a2; X< o (~.~o)

which expresses the continuity of ~Q/~ in passing through Z.

The function Q suffers a discontinuity on the surfaces S

and Z, which means that along the surfaces S and Z, surface

vortices are located as shown in figure 2. The direction of such a
surface vortex is perpendicular to the direction of the relative velocity
vector of two particles of the fluid adjacent to the surface of dis-
continuity on its two sides. In”particular, on the surface ~, on

account of equation (1.10), only ~/ay suffers a discontinuity and

therefore the vortex lines on z are directed parallel to the x-axis

as shown in figure 2.
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Since all the vortices lie in
cal with respect to the xy-plane,
whereas the values of aQ/~x and

55

the xy-plane, at two points symmetri-
the values of aq/az will be the same,
ao/by will differ only in sign.

It may therefore be assumed that

Q(x,y,-z) = - Q(x,y,z) (loll)

Assuming in particular z = O yields

in the entire xy-plane

strip Z (on which IP

Since on the strip

(p(x,y,o) = o

with the exception of the circle S and the

suffers a discontinuity).

z both condition (1.10) and the condition

derived from equation (1.11) must be satisfied

and

(az=+o=(2’)z_o = 0 ‘or Iyl<a; ‘2+‘2>a2;x<0 (’.’2)--
Finally, since the fluid far ahead of the wing is assumed to be

undisturbed, the condition at infinity is

(1.13)

In the hydrodynamic problem under consideration, account is taken
of the distribution of the vortices along the surface of the wing. It
is this circumstance which makes the treatment more accurate than
the usual wing theory.

The hydrodynamic problem is thus reduced to the following mathe-
matical problem: To find a harmonic function Q(x,y,z) regular over
the “entire half-space z > 0, which on the circle S satisfies the
contition

(1.14)
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.o.n the strip Z , the condition

b
()ax ~=o = 0

(1.15)

on the entire remaining part of the xy-plane, the condition

Q(x,y,o) = o (1.16)

and the derivatives of which remain bounded in the neighborhood of the
rear semicircumference BCD, while in the neighborhood of the forward
semicircumference BAD they may approach infinity as l/@ where ‘5
is t“hedistance of a pint to the semicircumference BAD. Finally
the condition at infinity (1.13) must be satisfied.

An expression for the harmonic function CP(x,y,Z) is given in
closed form depending .on an arbitrary function f(x,y) satisfying all
the imposed requirements besides equation (1.14). The function ~(x,y)
can be determined from this condition) that is~ the shape of the wing
corres~nding to the function f(x,y) . An integral equation 5s also

given, the solution of which is reduced to the determination of the
function f(x,y) for the given shape of the wing, that is, for a
given function L(x,y).

2. Derivation of the Fun-dsmental Equation

Inside the circle ABCD, the ~int Q with coordinates g, q is
taken and the function K(x,Y,z,E,T) constructed, where X,Y,Z are
the coordinates of the point P, according to the following conditions:

(1) The function K, considered as a function of the mint P, is
a harmonic function outside the circle ABCD.

(2) The function K becomes zero at the points of the plane xy
lying outside the circle ABCD.

(3) The derivative aK/az becomes zero at all points of the circle

ABCD, except the point Q.

(4) When the point P approaches the point Q, remaining in the
upper half-space z > O? the function K increases to infinity but
the difference K - (l/r), where

r x- E)2+(y-~)2+z2

remains bounded.
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(5) The function K remains finite
borhood of the contour C of the circle

Because of the
two points situated
only in sign:

as follows from the
evident that if the

and continuous
ABCD.

second contition, the values of the
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in the neigh-

function K at
symmetrically with respect to the plane xy differ

K(x,y,-z,~,V) = - K(x,Y,zj~>~) (2.1)

principle of analytic continuation. It is then
third condition is satisfied on the upper side of

the circle’ ABCD it will be satisfied also on the lower side, since
according to equation “(2.1) the derivative aK/az has the same value
at two points situated symmetrically with respect to the xy-plane.

from

into

It is evident further that when the point P approaches the point, Q
below so that z< O then K(x,y,z,&q) will behave as - l/r.

Because of the third condition, the function K can be continued
the lower half-space through the upper side of the circie ABCD

as an even function of z. Thus a second branch of the function K is
assumed, again determined over all the space outside the circle ABCD
and differing only in sign from the initial branch of the function K.
It is then evident, however, that at the points of the upper side.of
the circle ABCD, the values of the second branch of the function K
and its derivatives coincide with the values of the first branch of
the function K and
of the circle ABCD.
second branch of the
ABCD into the lower
is again obtained.

its derivatives at the points of the lower side
That is, in the analytic continuation of the
function K throtigh the upper side of the circle
half-space, the initial branch of this function

A two-sheet Riemann space is considered for which the branching
line is the circumference ABCD. In this space K(x,y,z,~,T) is a
single-valued ‘harmonic function remaining finite everywhere with the
exception of the two pints Q having the same coordinates (%,7,0),
but belonging to two different sheets of space; in one sheet the
function K behaves near the point Q as l/r and in the other sheet

l/r. Such a function K(x,y,z,~,q) can readily be constructed
~~ the method of Somnerfeld (reference 2). In this WRY for the case of
a two-sheet Riemann space having as branch line the z-sxis, a harmonic
function V(p,q,z) (@,Q,z being the cylindrical coordinates of
the point) is determined which is single-valued and continuous in the
entire two-sheet space with the exception of the points Q and Q’
having the cylintiical coordinates (P’,Q’,z’) and (p’,-q’,z’),
where near the point Q the function V behaves as l/r and near
the paint “Q’ as - l/r, where

r = ~P2+P”- ‘pp’ COS(Q - q)’)+ (z - z’)’

r’ = ~’ + P12 - ‘pp’ Cos(ql+ q)’)+ (z - ZI)2
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This function V has the form:

where

NACA TM 1324

(p+p’)z+(z-z’)z; T=cosq; T’=cos+.

Setting, in

v’ =

yields

particular,

fi; r= pz+p ,2 + 2pp’ COSQ + (z - Z’)2

or finally
2@ sin ~

v=; arc tan
r

An inversion with respect to the pint with
(p=o, z=o is carried out.

2a2(x, - a)

arc ‘an 4.2 :=2

coordinates p = a,

2a2(~, - a)
pcosf!=a+

L 1
:-o =.+

psin~=

/
(xl - (El - a)2 + ~12a)2 + y12 + 212

2a2yl 2a2zl
;2=

(xl - .)2 + yl 2 + ~12 (xl - .)2 + y12 + z12

z’ =

The function

2a2V

a)2 + y12
+z?~
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expressed in the variables xl? YIJ 21 is then, as is known, a harmonic

fqnction. Computing it and replacing xl, yl, Z1 by y, Z, x and El, cl
by q, ~ yield the required expression of the function K(xYY,z,E,v):

k

K(x,y,z,~,~) = ~arc tan
~a2. ~2. q2~a2-x2-y2-z2+~

-@ ar
(2.2)

valid for Z>o, where

r (x - E)2 + (y .-q)z + Z2

(2.3)

(a2 - x2 - y2 - Z2)2 + 4a2z2 = a2 +x2 +y2 + Z2)2 - 4a2(x2 +y2)

That this function satisfies all the above set requirements is
easily verified; the arc tangents must be taken between O and IT/2;
for .Z< 0 the value of the function K is obtainedby equation (2.1).

The following function is set up:

(2.4)

where f(x,y) is an arbitrary function, which is continuous together
with its partial derivatives of the first and second order in the entire
circle S, and the integration extends over the entire area of the
circle S. Evidently, Ql(x,Y~z) is a harmonic function in the entire

space outside the circle S. Because of the first property of the
function K, the fUnCtiOn Ql[x,Y,z) becomes zero at all points of

the plane xy which are outside the circle S. Hence equations (1.15)
and (1.16), which must be satisfied by the solution (p(x,y,z) of the
problem posed in section 1, will be satisfied for the function QJx,y,z).
The funCtiOn Ql(X:yJZ) does not in general satisfy the condition of
the finiteness of the derivatives of this function on the rear half of
the contour of the circle S. For this reason, a function such that
the obtained function Q(x,y,z) also satisfies this condition is added
to Ql(x,y,z).

,..,
The following equation is evident:
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The character of

“considered as a pint

the approach of the function

approaches the contour c of
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bK/~x to infinity is

the circle S. .As

may be easily computed

aK 2(X - E) arc tan~~a2-X2-Y2-Z2+R—=-
ax - X$ @ ar

* ~a2-~2- ~2~a2-x2-y2-’2+R —

{}

X-E x

’11 2a2r2 + (a2 - ~2 - q2)(a2 - X2 - y2 - Z2 + R) r2 ‘F
(2.5)

If.a point with coordinates X,y,z is near the contour C of the
circle S the distance of this pcint to the contour C ‘is denoted
by 5; then

i= 4a2+x2+y2+z2-2a (2.6)

Hence near the contour C, the

When the fixed pint C,q
pint with coordinates .,y,z
then, as follows from equation

approximate equation holds:

R . 2ab (2.7)

lies inside the circle S while the
lies near the contoti C of the circle,
(2.5),

~=-~~’da2- x2-y2-z2+R+Q(l) (2.8)

where the symbol 0(1) denotes a magnitude which remains finite when
5 approaches zero. Thus aK/ax has the order l/~. The principal

part of ~K/ax is not a harmonic function. It is not difficult, however,
to find a hmmonic function having the same infinite part near the
contour C as ~K/ax . For this, it is sufficient to form, after the
analogy of equation (2.5), the derivative bK/bgj this derivative

remains finite near the contour C of the wing; morqover it is easy
to see that

bK bK a2-x2-y2-z2+R

~+% =-fi[2a2r2+(a2-~2 - ~2)(a2 - X2 - Y2 - ‘2 + R)]

(2.9)
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This function is harmonic and differs from aK/~x by a quantity
which remains finite near the contour C.

By computation, it is
is represented in the form

further shown that the function just described
of the integml

%
$$+g=.+, J’ {!2 - ~2- ~24 a2-x2-@-z2+Rm8r dy

-m (x2+#+z2+a2-2ax cOsy-2ay stiy)(g2+ qZ+a2-2agcosy-2aq .siny)
(2.10)

where the function

~a2-x2-y2-z2+R

x2+y2+z2+ a2-2axcos T-2aysin T

is a solution
the branching
as a singular

of the equation of Laplace having the circumference C as
line and the pint with coordinates (a cos y, a sin y, O)
point. From this it follows that the function

3n

r

t3K 1 — @ - ~2-q2a2-xZ-y2-z2 +Rcosydr
—+—
ax

f12@ ~ (x2+y2+z2+a2- 2ax cos y - 2ay sin r)(~z + q2 + az - 2a.5cos r - 2aq sin ~)

2

$
bK 1

[

&~&2 - X2 -,2- Z2 + R CCIS~ d,

-- z-~ (x2+y2+z2+a2-
(2.11)

2ax cofiy - 2ay sin y)(~z + qz + 82 - 2a~ cos y - 2allsin y)
Yr.-—
2

remains finite
circle S.

Therefore

near the mints

it is assumed

of the rear semicircumference

w
/[ {

hK
~=~ ,f(’%n) ~+

3X s
-Z-

J

41.2- ~2-q2&2-x2-$-z2+R C08YdT
+
fi~n (x2+#+z2+a2-

1
2ax cos y - 2ay sin r)(E2 + ~2 + a2 - 2a~ cos y - 2aq sin y)

d~ dq (2.12)

of the

)“

2

—
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Integrating with
(1.13) yield the

3Tt

respect to x and considering the condition at infinity
final equation

‘T(x,y,z) = * u {f(~, q) “K(x,y,z,&q) +

s
\

-D’
-2-

1 4/.2- E2- f@ - X2-#- z2+Rcosydrdx

*24 }

d~dq (2.13)
(x2+Y2+z2+82 -2axc0sy- 2aysiny)(~2+q2+a2 -2a5c0sr- 2aqsiny)

+- 2!
2

This equation may he written in somewhat different

equation (2,11)

J

form. Because of

&l u’bKax=-z
q

f(&,q)d~ d? - * x

s
Z@ 2

It
‘Z

us

‘C2-#&2- x2-Y2-z2”+R cOsrdr f(~,q)d~ dq
~ (x2+ /+z2+a2- 2axc0sy-2ay sin y)(E2+q2+ a2-2agc06r-2aq sin r)
--

S2

Since the function K becomes zero on the contour C

Introduction of further notations

(2.14)

results in

?lp 1

z=% H’ K(x,y,z,~,q)F(~,~)d~dq +

~
s

!4

2.
a2-x2-y2- z2+RG(y)ccsy dT

(2.16)

m x2+~+z2+a2-2ax cosy-2aysiny
--
2
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and after integration with respect to x

x

Q(X,YYZ) =*
J’s!

K(X,y,Z,~,~)dX F(&7)dEd7 +

s +Ce

II

x 7

1[ ‘a2-x2-y2- z2+RG(y)cosy

X2 + y2 + Z2 + a2 - 2ax cos ~ - 2ay”sin y b ‘y .(2”~7)
+= -:

The given functions F(~,TI) in the circle S and the function
G(y) in the interval (-fi/2, Yt/2) ccnnpletelyde tegnine f(&q), so
that the equations (2.13) and (2.17) are equivalent.

.
The equation q(x,y,z) obtained satisfies the conditions imposed

in section 1.

This function is evidently a harmonic function in the entire space
exterior to the circle S and satisfies the conditions at infinity,
equation (1.13).. From equation (2.12) it follows, that in the “plane xy
for Xz+yz>a 2 the condition is satisfied:

and from equation (2.13) it follows that

(p(x,y,o) = o

in that part of the plane XY which lies outside the circle S and

the strip Z.

It remains to prove the finiteness of the first derivatives of
the function q(x,y,z) at the pints of the rear semicircumference C
and to determine the behavior of these derivatives on approaching the
points of the forward semicircumference C.

In considering the neighborhood ,ofthe rear side of the circum-
ference c, equation (2.16) may be used. The latter shows that aQ/bx
remains continuous at the points of the rear half of the circumference C
and becomes zero at these points.

The behavior of the derivatives with respect to y and z of the
following function is considered:
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near the contour C.
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(2.18)

(2.19)

Similarly to equation (’2.9),

2-x2-y2-z2+R

[n 2a2r2 + (az - 52 - qz)(az - X2 - yz - Z2 + R)]

(2.20)

and similarly to equation (2.14),

where this part of the integral remains finite everywhere and on the
contour C becomes zero.

In order to evaluate the remaining part of the integral equa-
tion (2.19), the following two integrals are considered:

u’ ~az . ~z .112 d~ dq
J1(X,Y,Z)=

s
2a2r2 + (a2 - &2 - ~2)(a2 - X2 - yz _ Z2 + R)

JY’ 1(2.22)

d~ dq
J2(x,Y>z)=

&2 - ~z - q2 ~a2r2 + (a2 - ~2 - q2)(a2 - # - yz -
s

22 + Rjj

Both, on account of the symmetry, depend only on ~~ and Z;
hence without restricting the generality, it may be assumed that y = O,
X>(). The distance b of a mint with coordinates (x,O,z) is

introduced to the contour C:
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5 = $ll(a - x)2 + .2

Since

R>lx2+z2-a21

the following relation will hold:

Iblar

whence

Since

2’SC

J’
o

J1(X,O,Z) s

[1 ‘

az - C2 - 72 d~d7

2a2[(x - 1-g)z+ p’ + 22
s

coordinates are introduced

.g=pcosa; q =psin$

au21-t

J1(XYO,Z) < .%CG d$

00
2a2[p2 - 2px Cos$ + X2 + Zq

d$ 2Tc=

P2 -2pxcos#+x?+z2 #(p2 +x2 + 22)2 - 4p2 X2

hence

a

J1(X,O,Z)S ~

Sd

P_dp

a

o
‘(pz +X2+22)2 - 4p2x2

For x~a

a

[,”’ a2 - P2 d
Jl(x,O,z)< ~

az
o (P2 +X2)2 - 4p2x2

11=-
a

—.
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While for x < a, use is made of the inequality

R~a2-x2-z2.

to obtain

J1(X,O,Z) ~ :
[[

~d<dv

s a2[(X-~)2+” ~2+z2]+ (a2-~2- ~2)(a2-x2-z2)

21t

1

f[

2 d$ dp
=—

2 a4 -
(2.23)

2a2 xp cos 9 + p2(x2 + Z2)
00.

[j

‘P ti2- p2 dp”
1-t

f

~. -4. a Pdp=

o
[a4+p2(x2+ z2)]2- 4a4x2p2

~4 -X2P2
o J () .2-

The following inequality results:

The second integral is

Jl(x,y,z) ~~

considered. As before,

(2.24)

a

J2(xjOjZ) 6 ~

,s

p dp

o PY(P2+X2+ Z2)2-4P2X2

For x>a

For x= a

“!J2(x,0,z)Sfi

o

an inequality of the type in equation (2.23) is used:

p dp

(a2 - p2)[a4 + p2(x2 + z2) + 2a2xp][a2 - xp)2 + p2z2]

p dp

~(a2 - P2) [(a2 - XP)2 + z2#’]

11
=—

a



/

U ‘—-
;!

/ i
1

NACA TM 1324 67

If z ~a - x and therefore 5.4 z+, then

.-
“-J2(x;0,z) <~

r’22 () &=~’&

butif 04z<a - x, and therefore 5S (a- x)@, then

f

J2(x,0, z) <~
P dp ‘n

a2
f

p dp
dI?2

‘~
o

(az-xp)iq o .(a-x)tl~=a2(l -x) ‘azb

The following approximation is obtained:

where

Near the contour C

R ‘ 2ab

If this relation, the evident inequality

and the obtained
is obtained from

la2-x2-y2-z21<R

(2.25)

(2.26)

(2.27)

approximations are used, the following approximation
equation (2.20):

It is evident from equations (2.19) and (2.21) that near the

contour C,..,, ,.,

(2.28)
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The following derivative is fomned:

s

But

~K 2Z A

z=->
arc tan A+ ~—

fil+A2
[,

‘+za 2+X2+ y2+z2-R-—
r3

rR(a2 - X2 - y2 - Z2 + R)‘1

where

A=
~a2-~2- ?12~a2-x2-y2-z2+R

ar@

Hence if

then, on account of the inequality

for z > 0 the approximation results:

1$+ ‘M Lr5’’d’+
s

2,+ azM(a2+x2+y2+z2 -R)

[[

~ dgd,

2-X2-Y2-Z2+R s
2a2r2+(a2- ~2-q2)(a2 -x2 -y2- Z2+R)

Noting that

Lfv’
s

and making use of approximation (2.24) yield



NACA TM 1324

>. I

Since for z > 0

z

&2-x2 -y2-z2+R

hence

69

4fiM+2@Mz
2+x2 +y2+z2 -R)

2-x2 -y2-z2+R

a2-x2-y2-z2] =,~R-a2+x2+y2+z2.—

2-(a2 -x2-#-

(a2+x2+y2+z2-

Now when the peint P(x,y,z) is near

R= 2a5; lX2+y2+Z2

there is obtained

la=0($

22)2 2a

+x2+ y2+z2

the contour C, then because of

a21< R

(2.29)

Equation (2.16) is again considered. Since the derivatives

‘a
~a2 - x2 -#-z2+R=

z

a a2-x2- y2 - z2+R=
z~

Y )~a2-x2-y2-z2+Rg

R

za 2 2+x2+y2+z -R)

}

(2.30)

2-X2-Y2-Z2+R

‘&(a2+x2+ y2+z2-R)~R-a2 +x2+y2+z2
2aR J

have near the contour C the order l/@, it is clear from equa-
3. tion (2.16) and the obtained equations (2.28) and (2.29) that at the

points of the rear semicircumference of C there is the estimate

(2.31)
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But is is then evident
finite at the pints”of the

.
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that the derivatives ti~~y and &p/bz are
rear semicircumference C.

The behavior of the derivatives of the function Q near the for-
ward semicircumference C can readily be determined, starting from
equations (2.12) and (2.13).

The first of these equations may be written in the form:
T~

a($) 1

SS J
Zfi

~az -
~f(~,q)d~dv -

x2-y2- Z2+R G(y) COS y—=—
ax Zfi

dy

2- 2axcosy-2aysiny11 x2+y2+z2+a
s

2
(2.32)

But on the one hand, the estimate

holds for the neighborhood of the entire
on the forward semicircumference C, the
evidently remains finite. Hence for the
first of the estimates is obtained

contour Cj on the other hand,
second integral of equation (2.32)

forward semicircumference C the

aq ~ 1()
aq) 1() a($) ()1—= —.— .

ax @ ‘ay-”~;z=oq (2.33)

while the latter two of
from equation (2.13).

In this manner all
function cp(x,y,z) are

The shape
explained. By

these estimates are obtained in a similar manner

the conditions which must be satisfied by the
satisfied.

Hence it is
circle S. Both
to z and then
function K,”

of wing to which the obtained solution corres~nds is
equation (1.14)

(2.34)

necessary to find the value &p/~z in the plane of the
sides of eq’iuation(2.13) are differentiated with respect
z set = O. On account of the very definition of the
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Moreover, on account of equation (2.30),

{#-

0
a

for x2 + y2< a2

:::0 z
$la2-x2-y2-z2+R= a@

for X2 + y2 > a2
X2 + y2 - a2

If this is taken into account,

()&az Z=o = -

f(x,y) + g(y) (2.36)

where

g(,)= > J“-Jy(~ daz - p - q’ COB Tf(E,q)dr dx d< dq

x2+? -a2(x2+#+a2- 2=c0sr- 2aysinr)(G2+ n2+a2-2* c0ey-2aq6in r)

(2.37)

For the function ~(x,y) the foliowing expression is found:

x

~(x,y) s: Lrf(x, y)dx - * x + gl(y)

o

(2.38)

where gl(y’) is an arbitrary function of y.

Thus, for the assumed degree of approximation, the bending of the
wing in the transverse direction produces no effect on the fomn of the
flow .

It is assumed that the shape of the wing is given, that is, the
function ~(x,y) and therefore the following function are given:

,.

~ = M(x,y) (2.39)
c ax
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From equations (2.34)and (2.36) it is clear that

f(x,y) = M(x,y) + g(y), (2.40)

Substituting this value in equation (2.37) and introducing the
notations

N(y) =~ x
2n3

~~

Jss [

d
-“E2 - T12M(E,q) cos

* LG-CZx’+y’ +:.

ydrdxdcdq

2ax cos r - 2ay sin r)(gz + qz + az - Za<cos r - 2aq sin T)+-
2

(2.41)

H(Y>n) = ~ X

give an integral Fredho3m equation of the second kind for the determi-
nation of the function g(y):

a

dY) = N(y) +J’H(y,7)g(q)dq (2.42)
-a

In consideration of examples, a function f(x,y) shall be given
and the shape of the wing then determined by equation (2.38). For the
obtained shapes of,the wing it is not difficult to find a solution by
the usual theory, a fact which provides the possibility of evaluating
the degree of accuracy of the

3. Computation of

The fundamental equation
consideration is recalled:

usual theory.

the Forces Acting on the Wing

determining the motion of the type under

f

q!(x, y,z) = & Sr(K(x,Y,z, Gn) ++x
3X

fi*

x—

[r

4/~@ - .2s- y2 - .2+, .0s ,., d

}

(3.1)

f(~,q)d~ dq
(x2+y2+z2+a2 -2axc0s y-2aysinr)(~2+q2 +82 - 2a5c0sr- Zaqsiny)+- II

:
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The value of the function q for the points of

m. is computed. Since at the points of the half-strip,.,

the half-strip Z
z

aq ~—=
ax

this value is a function only of y. The notation is introduced

@(y) = lim “Q(x,y,z) for Iyl ‘a, x2+y2>a2, x<O (3.2)
z-w-o

Then evidently

lim (p(x,y,z) = - NY) for lyl<a, x2+y2>a2, x<O (3.3)
m-o

The circulation over the contour M’NM (fig. 2) connecting the
two pints M and M’ of which pint M’ lies on the lower and point

M the upper side of the half-strip 2, both points M and M’ having

the same coordinates x,y,O, is denotedby r(y). It is then evident that

r(y) =+(M) -@(M’] = 241(Y) (3.4)

Since in the plane xy outside the circle S both the function K

and the function

a2 - X2 - y2 - z2 +R

become zero, it is clear that

.
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Computation shows that

@7

J’
~2 - X2 -yzdx

~2+y2+a2-2uc0s y-2aysinr ‘“{f=-’} ““’)

-=2

where the plus sign is taken for y < a sin y and the minus sign for
y> a sin y.

The following expression is written for the distribution of the
circulation in the vortex layer formed behind the wing:

The forces acting on the wing are
pressure at a point of the wing S on
by P. the pressure at the same point
basis of equation (1.8)

P- - p+=-

where the value of ~q@x is taken on

computed. Denoting by p+
the upper side of the wing
on the lower side gives on

2,.3
ax

the upper side of the wing.

For the lift force P, the following expression is obtained:

u’ u W
(P- -

a~
P=

L1’

~~dyp+)axay. -2pc ~dxay=-2pc

s s -a --ax

a

=- 2pc
J[ d@GZYN) - d- f/z2JY@g Q= 2PC

f

*(Y) ‘m

-a -a

The following formula is obtained:

the
and
the

(3.8)

.

a

P=pc J’ r(y)dy (3.9)
-a
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having the same form as
But the distribution of
somewhat different from

in the usual theory of a wing of finite spin.
the circulation I’(y) by the present theory is
that obtained.by the usual theory. The derviva-,.

tion”given” is”not”connected with the s~pe of the wing. “

With the aid of equation (3.6) P may be directly expressed thrmujh
f(~,q):

u’
%

2pac
P=-—

[

Cos r dy

7F ‘a2-E2-

q2 f(g,q) d~dq (3.10)

s *
~2+q2+a2-2a~c~s7- 2a~Sinr

2

The expression for the induced resistance W in terms of the
circulation r(y) likewise has the same form as in the usual theory:

a a

w=: M r(y) dr(y’) 1 dy dy’
dy’ y - y’-a -a

(3.11)

because the origin of the induced resistance is due to the fact that
behind the wing a region of disturbed motion of the fluid is formedj
the kinetic energy of this disturbance is determined on the other hand
exclusively by the distribution of the circulation at distant points
from the wing.

The expression for the induced resistance is obtained from the
momentum law.

.

A surface enclosing the wing S is denoted by Bj the momentum
law applied to the wing in a steady flow then leads to the expression

w= H’ p cos(n,x)da+
r!

pVnVxd u

B B

(3.12)

where n is the direction of the outer normal to the surface B and

Vx, VY9 v= are the components of the velocity in the relative motion

of the fluid about the wing. Thus

,,.,.

a(p
Vx=-c+—; Vn=-ccos(n,x) +%

ax

P
*-XRY ‘6Y+($71=Po+wax

II
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Substituting these values in the preceding formula and noting that

L/v’ L/’ agdo=o
cos(n,x)du = O j

an
B B

results in

The surface B
center at the mint

consists
x= Xo <

of the circle cut out by this
increase in the radius of the

of a hemisphere of large radius with
-a of the x-axis enclosing the wing, and

hemisphere on the plane x = Xo. With

hemisphere to infinity the correspmding

parts of the integrals entering the preceding formula approach zero. On
the surface x = X.

aq aQ
cos(n,x) =-l; -=--.-.

therefore

Wp
~$ [( )

a~ 2=—
,2 s+

where the integration extends over

‘o + -= the following equation is
the entire plane x = Xn. For
obtained :

where @(y, z) denotes the velocity potential of

(3.14)

v

dz (3.15)

the plane-parallel
flow which is established in the transverse planes far behind the wing.

The usual transformations by Green’s formula yield

a

W=-p
f

L* dy*(Y) ~z
-a

(3.16)

where the integral is taken over the upper side of the segment (-a,a)
in the plane yz.

a
Since

r(Y) =
a~

Lr
dr(y’)2*(Y); >= &

-a Y’ - Y
equation (3.11) is obtained.

(3.17)

—----- ....-,.-,. .. ... . . .. . . .... ...,,, ,,, , ,,,, ,,, ,,., , ,,,
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.

,

In orderto find the center of pressure, the princi~l moments of
the pressure forces about the Ox and Oy axes are

., ,.’

For the moment about the Ox axis,

r! (P. - P+)Y dJCdy= - 2pc
!!

aq
Mx = ~ydxdy=

s s

determined.

a

2pc
! @ (Y)Y
-a

dy

from which
a

~ = “Pc f
yr(y)dy

-a

Expressing Mx in terms of f(x,y) yields
311

UJ ‘

4 pcaz
T

~=--— az - E2 - qz f(~,~)sin y cos rdrd~d~ (3.19)
3 #

If
&+qz+az-2a~cosy-2a~ siny

s ?!
>

For the moment about the Oy axis,

L/v’%=- (P-- p+)xtidy=zpc L/v’aJP~
xax

s s

(3.18)

dy (3.2o)

Substituting the value &P/ax and integrating yield

The following values are obtained for the coordinates of the center
of pressure:

NACA. comment:
rected in the paper

%
xc=- !5;YC=7 (3.22)

‘,

4. Examples

Errors in these examples are referred to and cor-
“Steady Vibrations of Wing of Circular Plan ForM”.
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The

The

equations just obtained

velocity pbential for

are presented again:

Z>o is determined

NACA TM 1324

by the equation

Q(x, y,z) = *
[[{

lxK(x,y,z,~,q) + —

s flz~
311

x T

N

~2. x2-y2-z2+~ ~2- ~2-q2cosrdrdx

.)

f(&~)d~ dq

+- K
(x2 +y2+z2+ a2-2axco.~-2ay siny)(g2+ q2+a2-2agc0.y- 2aqsiny)

7

) (4.1)

where

2
K(x,y,z,&v) = —arc tan

2-x2-y2-z2+~
fir

-@ a~ (4.2)

R= f/(a2-x2- y2-z2)2+4a2z2; r=~(x-~)2. +(y-~)2+z2

For the circulation distribution in the vortex strip formed behind

the wing,

l-b)=--jx

SJC3 ‘@- P- Vzdaz-.xz-yzf(<,q) cos ydrdxd~dq

(x2+y2+a2- 2ax C06 y - 2ay sin T-)(C2+ q2 + a2 - 2ag cos y - 2a7 sin T-)
(4.3)

s 2

where the plus sign is taken for y < a sin Y and the minus sign for
y>asinr

The following expression gives the lift force:
33t

a

J’

T

P=pc T(y)dy= --
X2 !!!

-a s ~.

2

The usual expression for the induced resistance is

a a

W=fi
[!

dr(y’)
“r(y) dyl ~dydy’

-a -a

(4.5)
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The coordinates of the center of pressure are determined by the
equations

%%xc = - —; yc =—
P. P

(4.6)

where

If y is set equal to -a cos 9 and r (y) is represented in the
form of a trigonometric series,

r(y) =A1sin@+Azsin2e +... (o<e<m) (4.9)

P, W and ~ are
this series by the

where

directly expressed in terms of the coefficients of
formulas

w

;W= A IT(3 E I_PAn2;Mx .
8

- } fipca2A2

n=l

(4.10)

Finally, the shape of the wing is determined by the equation

x

g(x,y) = ~ J’f(x,y)dx - ~ x + gl(y)
c

o

El(Y) =3 x

(4.1.1)

(4.12)

Alxz+yz-az(xz+yz+az- 2ax cos y - 2ay sin y) (E2 + q2 + a2 - 28.5 cos T- - 2aq sin y)

L
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The examples are now considered.

1. First

f(x,y) = Cu ,

where a is a small constant.

Polar coordinates are used and the following integral computed:

[[

~ d, d,

s
~2+~2+a2-2a~cosT-2a~ siny

Substituting this value in equation (4.3) yields

‘(y’= -wrcosr[i=l-’ld’
2

If the integral is taken,

{

r(y) =: - 4a+2~2- +24J-) -

(a+y)logf i-da-y -(a- y) log

}

4E=@’Y ~4141

4/Ta+f/G 4/’z+4/nY “

setbing y = -a cos @ and expanding ‘(-a cos e) in a trigono-

metric sine series in the interval O < 19< x give after simple
computations

f

L
1 e- Cos — 1

}

- sin Q
(1 - Cos e) log 2 - (1 + Cos e) log 2

l+cose l+sin~
T 2

=Alsinf3+~sin3e +A5sin5e +... (o < e< Ir) (4.15)
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where

Al
16aca

= — - Azk+l ‘,-
~2 “’

so that

4aca (1-+fi2k(k+ l)(2k + 1) 3

(k=l, 2, ..)

16aca 496acu
‘3 =

._. A5 =-—

451r2 ‘ 47251C2‘

The distribution of the circulation obtained
an elliptical distribution.

81

1 1
–+...+
5 )4k+l

(4.16)

. . .

is very near that of

The lift force and the induced drag are obtained by application of
equations (4.10).

P;=_ pcaAl = ~ pa2c2a= 2.5465 pa2c2a

.(4.17) -

@(A12 + 3A32 + ...)= 1.034 pa2c2a2

In order to determine the psition of the center of pressure, ~

must be computed by equation (4.8).

Equation (4.13) gives

‘Y =
- ~ pc2a3a j

The distance from ‘the center of
on the Ox axis, to the leading edge
0.238 of the diameter of the wing.,

In order to determine the shape

!%=2
‘C= - p 6 a

J

(4.18)

pressure, which evj.dently lies
Of the wing thus constitutes about

of the wing correswnding to the
assumed function,it is necessary to form the function g(y) by equa-
tion (4.12). If equation (4.13) is considered,

COS y .dr dx

‘1/x2 +y2-a2(x2+y2+a2- 2ax cos T-2ay sin y]

(4.19)
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The computation shows that for
311
T

r
COS y dy =-

x ‘m
l-(x

J 11 X2 + y2 + a2 - 2ax cos T

T

Y log

2a(x2 + y2)

- 2ay sin y

x2+(y-a)2+

X2 + (y + a)2

x(az + X2 + yz) x2+y2_a2
arc tan

a(x2 + y2)(x2 +

If

for O<eCfi

sin e

Ho(e) =

J +W

Y=

sin

- a cos

HO(G) ==

e f

J---y

NACA TM 1324

Y2 - a2) 2ax

Qj~=a sin@

~2
— sin @g(-a
ac

cos e)

cos el-t-t

2(t2+c0s2e) - 2(tz+cosz9)
.

t(t2 + 1 + c0s2e) t2 -

}

sin20
arc tan dt

(t2 + c0s2e)(t2 - sin2@] 2t

+

(4.20)

t2+4 COS4;

+
t2+4 sin4 $

Computation of this integral gives

1
e e- sin - 1 - Cos -

e logCos -
2 + sin ~ log 2

2 l+sin~ l+ COS;
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The shape of the wing is thus determined by the equation

~(x,y) = ax [l-&] =w{;+3~~anj.y-

1“(—log
+5+ ‘)(a+y”2 1

- — log )+zii+~~z

8X2
+-v

8fi2 -@’-J~ -
w

83

(4.23)

This wing differs little from a plane wing inclined to the xy-plane
by a small angle a and may be obtained from such a plane wing by
twisting. The values of the function ~(x,y) for the mean value
y = O and for the values y = t a/2 are

[r[(X,O)=UX *+$ arc tan y

o mdy-+
lo&(+ + 1) +

1

J@ log(~ + I) = 0.8452 ax
IT2

‘)= ‘[; ‘:l’ar=dy -~ ‘0g2(2 + 4) - + ‘0g23 +
[(x, ta

1

log(2 + +7) +“G 1Log 3
IF

= 0.8335 ax

It is of interest to consider what results for the obtained wing
are given by the usual theory. The circulation obtained by this theory
is denoted by ro(Y);
metric series is

ro(-a cos El)

then the usual theory

Bn, which in the case

if the expansion of this circulation in a trigonO-

=B1sin6+B2sin2@+ . . . (O <6< m) (4.24),

gives an equation for determining the coefficients

considered reduces to the form

,, .!!,!!!! !!!! , --,,,, --.,,-... ! ! ..! m,,.,,! ! !!.!..!.!-!. —.--!-—--—-—— ...-. —. —-



. . ... .

84

m

z “{~sin ne = 2fica sin (3 a - g(-a cose) 1-—
r pn

n=l c! 4ca n=l

NACA TM 1324

}

sin ne
~ (4.25)

Equation (4.21) yields

Expansion of the function Ho(f3) into a trigonometric series is
sufficient to determine the coefficients Bn. Despite the complicated
form of the function ~(e), it can be expanded and in the interval
o<o~fi

( )

~(e)=sine ~-4- 2\1arcta”ydy +

0G7
mzsin(2k + 1)6

[

-l+:+...+—-
2(2k + 1)2 + 1

k=l k(k + 1)
1

4kil (4k+l)(4k +3) (4”27)

that is, -

H@l) = L ~2k+l sin(2k + 1)6
k=O

where

P~ = - o.1389j p3 = - o.5048j 135= - 0.1213

p7 = - 0.0460j ~9 = - 0.0212, ...

Equation (4.26) shows that

4aca(n2 - pl) 4aca~2k+l
BI = .j B2k = o; B2k+~ = - (k=l, 2, . ..)

II(II + 2) 2 + fi(2k+ 1)

(4.28)

The numerical values of the first coefficients will be

B1 = 2.4784 ma ; B3 = 0.0562 ~aj B5 = 0.0087 uca

B7’= 0.0024 aca; Bg = 0.0009 uca, ...

.———.——.-. —-. ,—. ..- ...—. ..-—— .—,— —- .———.-—-,.— ..— ———
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The following value is obtained. for the lift force :

—..-. ,..

Po = ~ npcaBl

exceeding the accurate value by 53

with

For the induced drag,

= 3.8932 pc2a2a (4.29)

percent.

W. u 2.416 pa2c2a2

an error of 134 percent.

2. If a is assumed to be small, f(x,y) =

The circulation r(y) is computed. First
lowing integral is found.

(4.30)

- 2cax is taken.

the value of the fol-

U . Ed=i=hdv =$ fia2cos r (4.31)
s ~2+q2+a2- 2a~cosT-2aq siny 3

Equation (4.5) gives

,(y)=-fcos%[~~- l]d,

2

The computation of this integral leads to the very simple expression

r(y) = 2c~(a2 - Y2) (4.32)

Thus in the case considered, a parabolic distribution of the circu-
lation was obtained. For this reason the computation of the forces can
be easily carried out:

a.

P
s

8
= pc r(y)dy = ~“ap c2a3 = 2.667 ~c2a3

,.:.. ,.
-a

(4.33)

w=~ pc2a2a4= 1.2732 pc2a4a2
II

——
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Equation (4.31) is used in the computation of ~ by equation (4.8):

128 My
‘Y’— pc2a4a- 1.509 pc2a4a ; xc = - ~ = - ~ a

27fi
(4.34)

In
compute

order to determine the shape of the wing it is necessary to
the function g(y)j

K7?
4aca3

EdY) =-—
3fi2

[s+W
$

“equation (4.12) yields

COS2y dr dx

~(xz+ yz +az - 2= cos r- 2ay sin .)

Setting

317
HI(6) = - — sin Gg(-a cos e) (O<e<lr)

4aca
(4.35)

and carrying out the integration with respect to y yield

sin 6

Hi(6) =

s

sin e

{

t(tz+cos%) +

(tz + COS’%)2 ~-
m

tz+ 4 COS4 ;
~ (c0s26- t2)(t2+l+c0s2e)-~t cos e(t2+l+c0s2e)10g

tz+ 4 sin4 5
2

2(t24c0s2e)2 + (t2-

}

Cos2e)[l+ (t2+cos2e)21 arc tant2-sin2@ ~t

2(t2-sin2e)
Zt

Integration yields

+

{

(l+COS; )(l+sin~
Hi(e) =%

(

e
)

el
sine l-sin --cos~ +—log )

2 12
(

+

1
)(

el- Cos - - sin 1?
2 2)

[

( )(
1+ Cos : 1 - sin Q

)
sin e cos e log tan; + ~ log

2

( 1}

(4.36)

1-
9

Cos —
)(

l+sin~
2 )

In equation (4.11), the following is taken:

gl(y) = ~(az - yz)
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Then for the function ~(x,y), which determines the shape of the wing,
the following expression is obtained:

.> ,.. ..—,

ra+y y logx@___ (&+~a-,y)(-@-~a+y)

.a a- Y 4a
(z - J-”)(@ + J=) }

(4.37)

This wing is thus obtained as a deformation

~(x,y) = a(a2”- X2 - y2)

which for small a differs little from a segment

of the wing:

of a

In particular, for y = O,

[ 1
~(x,0)=a(a2-x2)+~ l--@+~ 10g(~+l) . a(a2-

sphere.

x2-0.0767ax)

In order to
is’expanded into

apply the general theory to the obtained wing H,(6)
a trigonometric series:

A.

“(c)=(”-d’ogtann
w

E sin(2k + 1)6

[

12fik(k+ 1) +
k=l 4k(k+ l)(2k - l)(2k +3) -

(
2(16k2+16k-3) l-~++- ...+

)“ 1

~ + 6(2k + 1)

=
z T2k+lsin(2k + I)e (4.38)
k=o

where

y-l “=- 0-6931 ; T3 = - 0.1783 ; T5 = - 0.0812

T7 = - 0.0463 ;Yg= - 0.0300, ...

I —
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For the case considered, the usual theory gives for the determination
of the” circ~ation

I’O(-acos G)= Blsin 9.+ B2sin26 ~...” (o< esl’r)

the equation

r

{

m

Bn sin ne = 2fica sin 0 aa sin 0 - E
g(-a cos ~) 1

}

sin ne
nBn —

n=l c 4ca n=l sin .!3

.(4.39).

Equation (4.35) and

m

sin2f3 = - ~ x
sin(2k + 1)6

(O<e<fi) (4.40)
m k=() (2k - l)(2k+ l)(2k +3).

give from equation (4.39) the equation

from which without difficulty Bn is obtained, in particular

B2k = O ; B1 = 1.8457 aca2 j B3 = - 0.2132 aca2

B5 = .- 0.0250 aca2 ; B7 = - 0.0075 aca2 j B9 = - 0.0032 aca2, ...

The following value is obtained for the lift force:

exceeding the

P=; fipcaB1= 2.899 ac2a3p (4.42)

accurate value by 8.7 percent.

The induced drag

w= 1.3927 pu2c2a4 (4.43)

exceeds the accurate value by 9.4 percent.
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3. In order to give an example of a nonsymmetrical wing,

. f(x,y) = acy

In this case it is first necessary to compute the integral

lf a2-~2-72d~dq
= $fia2sin y (4.44)

~ 52+ T2+a2-2a&?cos T-2aq s~nr

On account of equation (4.3),

311

!M.l.ca,-
r{y) s -—

/ Wu\LLsin y cos T —
3?’( , ~. Ia sir

h‘~’ A sin y)

1

—-ldy
lT- YI

--
2

After computing the integral,

r(y)=;

[

(a+y)<2a(a - y) - (a - y)~2a(a + y~ +

$(a+Y)(a -3y)10g ~-da-Y-
#%+~~

is obtained.

(4.45)

Assuming y = -a COS.0 and expanding in a trigonometric series
give

aca2
r’(-a cos 0) ==

[
2(1 - Cos e)cos g - 2(1 + cos f3)sin~ +

L
1

e
- Cos -

# (1 - Cos e)(l + 3 Cos e) log
2

l+ COS;

1- sin ~

+ (1 + Cos e)(l -3 Cos e) log 2.
) l+sin~ 1

=A2sin26+A4sin 40+ . . . (O<o<fl) (4.46]
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where

&k =

NACA TM 1324

A2=. 128 aca2

27x2

{4.47)

4aca2

[

8k2 + 1

(
1 +;+...+ 1

)

2k

fiz 6k(k2 - l)(4k2 - 1) 4k-1 -
1(k2-l)(4k2- 1)

(k= 2,3,

so that

A2=- 0.4803 aca2 j

‘6 =
0.00234 aca2 j

. . . )

A4 = 0.00549 aca2

‘8 = 0.00123 aca2

Evidently there is no lift force, whereas for the induced drag
the following value is obtained:

w= 0.1813 pa2c2a4 (4.48)

The moment of the forces about the Ox axis is:

% = - ~ fipca2A2 = 0.3772 pac2a4 (4.49)

The moment of the forces about the OY axis is computed with the
aid of e@ation (4.8)} where use must be tide
and it is found that

~=o

The following function is now computed:

Setting

of the re=ult (4.44),

(4.50)

sin y cos T dy dx

fx2+y2- a2(x2+y2+a2-2u .0s ~-2ay sin y)

sin Og(-a cos e) (0< e<fl) (4.51)
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and carrying out the integration with respect to y give

.[

sin e

Hz(e) =
sin @

{

Cos e(tz + Cos%) +
(@ + Cos%)z i-; -

m

; t Cos e(tz + 1 + Cos%) +

be
t2+4cosq

~ (t2 + I + cos2e) (c0s2e - tz) log

,t2 + 4 sin4~
2

t cos e[l+ (tz + c082e)2] arctantz-s.in2e

}

dt
tz - sinze 2t

{

1
; logq++ 1) +3

1

arc tan y
= sin e cos e

}.ndy-$+

(4.52)

l+3c08e l+COS$ ~ l+sin~
; log

-3c06e
sin

2 e- Cos ; log
1 - Cos - 2

2 1- si.n~2

Expansion in a trigonometric series gives

[ r 9X2
H2(e) s sin2e ~ Iogz(JZ+ 1) +:

arc tany 21591~C-7dy-=+=-mE 2(8k2 + 1)

(

1 12k2
l+*+ :.. +~-—

)
sin 2ke

k=2 (4k2 - l)(4k2 - 4) 8k2 + 1

m

=
E bzk sin Zke (4.53)
k==l
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where

62 = - 0;27412 j 54= - 0.081-27 j 86 = - 0.05198 j 58= - 0.03641, . . .

The usual theory for determining the circulation

f=

To(-a cos (3) = L Bn sin n@
n=l

gives the equation
v

E
n=l

Bn(l + me s

{

2fica sin e -au cos e -
g(-a cos e)

c
)

xca2a sin 2@ - & q(e) (4.54)

from which without difficulty

B2k+l = O (k = 0,1,2, . ..)

B2=. 0.7304 U.C~2 j B4=0.0047 aca2 j B6=().0021 acaz ; B8 =0.0011 aca2,.. .

The lift
moment”of the

force is found equal to zero and the induced drag and
forces about the Ox axis are

w= 0.4191 pa2c2a4 ; ~ = 0.5737 pa2c2a4 (4.55)

The first gives am error of 131 percent, the second of 52 percent.

By a combination of the obtained solutions it would have been
pssible to obtain further examples. From the examples given it is
clear that for the case of a circular wing considerable deviations are
obtained between the usual and the exact theories.

Translated by S. Reiss
National Advisory Committee
for Aeronautics
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